1. Disk 2 with center O rotates with angular velocity ω_2 as shown in Figure. What is the angular velocity of link 3?

$$\omega_3 = \text{rad/s}$$

2. Disk 2 roles on the ground with no slip. The velocity of its center A is shown in the Figure. Draw on the Figure below the velocity of B with the correct amplitude and direction.

$$v_A = 1 \text{ in./s}$$
3. Slider A moves with velocity \mathbf{v}_A as shown in the figure. What is the angular velocity ω_2 of link 2?

$$\omega_2 = \text{rad/s}$$

4. The figure shows a rigid body with three points A, B, C, attached to it. The velocity of A and B are \mathbf{v}_A and \mathbf{v}_B, respectively. Draw on the figure the velocity \mathbf{v}_C of C in its correct magnitude and direction.
5. Link 2 rotates with angular velocity \(\omega_2 \). For the instant shown in the figure, what is the angular velocity \(\omega_4 \) of link 4?

\[
\omega_4 = \text{rad/s}
\]

6. For the instant shown in the figure, link 3 is parallel to the line of centers \(\overline{O_2O_4} \). If the angular velocity of link 2 is \(\omega_2 \), what is the angular velocity \(\omega_4 \) of link 4?

\[
\omega_4 = \text{rad/s}
\]

7. For the instant shown in the figure the angular velocity of link 2 is \(\omega_2 \). What is the angular velocity \(\omega_4 \) of link 4?

\[
\omega_4 = \text{rad/s}
\]
8. The transmission angle θ_r of the four bar linkage is shown in Figure (a) below. Draw in Figure (b) the configuration of the mechanism where θ_r is minimal.

9. The angle ϕ that link 4 forms with a horizontal line through O_4 is shown in Figure (a) below. Draw in Figure (b) the configuration of the mechanism which maximizes ϕ.

10. Link 2 rotates with ω_2 as shown in Figure (a) below. Draw in Figure (b) the configuration for which the mechanism is locked.
11. For the instant shown in the figure, link 3 is parallel to the line of centers O_2O_4. If the angular velocity of link 2 is ω_2, what is the angular velocity ω_6 of link 6?

\[\omega_6 = \quad \text{rad/s} \]

12. Determine the mobility of the system shown in the figure below

M=

13. Determine the mobility of the system shown in the figure below

M=
14. Determine the mobility of the system shown below

\[M = \]

15. Point \(P \) in the pantograph shown below moves along the line \(A-B \). At the same time point \(Q \) moves along a line \(C-D \). If the distance form \(A \) to \(B \) is 2 in., what is the distance from \(C \) to \(D \)?

Dimensions: Links 2, 3, and 4 are 1.5 in. long.
Link 5 is 4 in. long

\[CD = \text{in.} \]
16. Approximate the time ratio in the quick return mechanism shown below

\[TR = \]

17. Slider 4 slides on the semi-circle which is attached to the ground. Link 2 rotates with angular velocity \(\omega_2 \). What is the angular velocity \(\omega_4 \) of slider 4?

\[\omega_4 = \text{rad/s} \]
18. A vector loop equation is defined for the mechanism shown below, where O is a fixed point. Let $f_1(r_2, r_3)$ be the x-component of the vector loop equation.

Determine the element J_{12} associated with the equation

\[
\begin{bmatrix}
J_{11} & J_{12} \\
J_{21} & J_{22}
\end{bmatrix}
\begin{bmatrix}
\Delta r_2 \\
\Delta r_3
\end{bmatrix}
= \begin{bmatrix}
f_1 \\
f_2
\end{bmatrix}
\]

$J_{12} =$

19. The four bars shown in the figure below are titled a, b, c and d. If the mechanism is a crank-crank mechanism, which of the four links is the ground?

Link a b c d

20. The figure shows a rigid body with two points A and B attached to it. The velocity of A and B are v_A and v_B, respectively. Draw the point C on the rigid body which has zero velocity.
Bonus Question

21. The velocity \(v_p \) of point \(P \) in the pantograph is shown in the figure below. What is the angular velocity \(\omega_4 \) of link 4?

Dimensions: Links 2, 3, and 4 are 1.5 in. long.
Link 5 is 4 in. long

\[\omega_4 = \text{rad/s} \]