Given: Velocity field \(\mathbf{v} = Bx(1+At)c + cy^2 \), with \(A = 0.5 \text{s}^{-1} \), \(B = c = 1 \text{m} \), coordinates measured in meters.

Plot: The pathline of the particle that passed through the point \((1, 1, 0)\) at time \(t = 0\). Compare with the streamlines through the same point at the instants \(t = 0, 1, \) and \(2\) s.

Solution:

For a particle, \(u = \frac{dx}{dt} \) and \(v = \frac{dy}{dt} \)

Then

\[
\begin{align*}
Bx(1+At) &= \frac{dt}{dt} \\
\ln x &= B \left[t + \frac{1}{2} At^2 \right]_0 \\
&= B \left[t + \frac{1}{2} At^2 \right]_0 \\
v &= cy = \frac{dy}{dt}, \
\int c dt = \int \frac{dy}{cy} \
\int y = y_0 e^{ct} \end{align*}
\]

The pathline may be plotted by varying \(t \) as shown below. The streamline is found (at given \(t \)) from \(\frac{dy}{dx} \) streamline = \(u/v \).

Then \(\frac{dy}{dx} \) = \(\frac{cy}{Bx(1+At)} \) and \((1+At)\frac{dy}{dt} = \frac{c}{B} \frac{dt}{dt} \)

\((1+At) \ln y = \frac{c}{B} \ln x + \ln c, \quad c, x \in \mathbb{R} \)

Streamline through point \((1, 1, 0)\) gives \(c_1 = 1 \). Then on substituting for \(A, B, \) and \(c \) we obtain

\[x = y(1.05t) \]

At \(t = 0 \), \(x = y \)
\(t = 1 \text{s}, \ x = y \)
\(t = 2 \text{s}, \ x = 2y \)

![Graph showing streamlines and pathline](image)