Given: Manometer system as shown

sa. liquid A = 0.75
sa. liquid B = 1.20

Find: Gage pressure at point "a"

Solution:

Basic equation: \(\frac{dP}{dz} = -\gamma dz \)

Assumptions:
1. Inertial fluid
2. Gravity is only body force
3. Fluids directed vertically
4. \(\gamma \) = constant

\[dP = -\gamma dz \]

For \(\gamma = \) constant, then \(dP = -\gamma dz \), i.e. \(P_2 - P_1 = -\gamma (z_2 - z_1) \)

\[P_2 - P_1 = -\gamma (z_2 - z_1) \]
\[P_3 - P_2 = -\gamma (z_3 - z_2) \]
\[P_4 - P_3 = -\gamma (z_4 - z_3) \]
\[P_5 - P_4 = -\gamma (z_5 - z_4) \]

Summing these equations recognizing that \(P_5 = P_a \) and \(P_1 = P_{atm} \) then

\[P_a - P_{atm} = -\gamma (z_5 - z_1) - \gamma (z_4 - z_3) - \gamma (z_3 - z_2) - \gamma (z_2 - z_1) \]

\[= \frac{120 + 62.4 + 62.4 + 62.4 + 62.4}{12} \times \frac{21}{12} \text{ in.} \times \frac{12}{12} \text{ in.} \]

\[\frac{1.18 \text{ psig}}{\text{ft}^2} \times \frac{\text{in.}^2}{\text{ft}^2} \]

\[P_a = 1.18 \text{ psig} \]