Given: The instantaneous leakage mass flow rate \(\dot{m} \) from a bicycle tire is proportional to the air density \(\rho \) in the tire and to the gauge pressure \(p \) in the tire.
Air in the tire is nearly isothermal (because the leakage rate is slow).
The initial air pressure is \(p_0 = 0.60 \text{ mPa (gage)} \) and the initial rate of pressure loss is \(1 \text{ mPa/day} \).

Find: (a) Pressure in the tire after 30 days
(b) Accuracy of rule of thumb which says a tire loses pressure at the rate of "a pound 1 psl per day."

Plot: the pressure as a function of time over the 30 days; show rule of thumb results for comparison.

Solution:

Apply conservation of mass to tire as the \(CV/\dot{m} \)
Basic equation:

\[
\dot{m} = \frac{\partial c}{\partial t} + \int_0^r \frac{\partial c_p}{\partial p} dp
\]

Assumptions:
(a) uniform properties in tire
(b) our inside CV behaves as ideal gas
(c) \(T = \text{constant} \)
(d) \(n = c (p - P_{\text{atm}}) p \)

Then we can write

\[
0 = \frac{\partial c}{\partial t} + \int_0^r \frac{\partial c_p}{\partial p} dp
\]

But \(p = nRT \) and \(\frac{\partial c_p}{\partial p} = \frac{c_p}{RT} \), so

\[
0 = \frac{\partial c}{\partial t} + \frac{c_p}{RT} (p - P_{\text{atm}})
\]

At \(t = 0 \), \(p = p_0 \) and \(\frac{\partial c}{\partial t} = \frac{\partial c}{\partial t} \). Plus

\[
0 = \frac{\partial c}{\partial t} + \frac{c_p}{RT} (p_0 - P_{\text{atm}}) \quad \text{and} \quad c = -\frac{\dot{m}_0}{p_0(P_{\text{atm}} - P_0)} \frac{\partial c}{\partial t}
\]

Substituting into Eq. \(\text{1} \) we obtain

\[
0 = \frac{\partial c}{\partial t} + \frac{p - (p - P_{\text{atm}})}{p_0(P_{\text{atm}} - P_0)} \frac{\partial c}{\partial t}
\]

Separating variables and integrating

\[
\int_0^{p_{\text{atm}}} \frac{\partial c}{c(p - P_{\text{atm}})} = \int_0^{t} \frac{\partial c}{c(p - P_{\text{atm}})}
\]

\[
\frac{1}{P_0} \int_0^{P_{\text{atm}}} \frac{p(p - P_{\text{atm}})}{c(p - P_{\text{atm}})} = \frac{\partial c}{\partial t} \quad \text{and} \quad c = -\frac{\dot{m}_0}{p_0(P_{\text{atm}} - P_0)} \frac{\partial c}{\partial t}
\]

\[
\dot{m} = \frac{1}{P_0} \int_0^{P_{\text{atm}}} \frac{p(p - P_{\text{atm}})}{c(p - P_{\text{atm}})} = \frac{\partial c}{\partial t} \quad \text{and} \quad c = -\frac{\dot{m}_0}{p_0(P_{\text{atm}} - P_0)} \frac{\partial c}{\partial t}
\]

\[
282
\]
Taking antilog of

\[1 - \frac{P_{cm}}{P_0} = \left(1 - \frac{P_{cm}}{P_0}\right) e^{\frac{dP/dt}{P_0 (P_0 - P_{cm})}} = \left(1 - \frac{P_{cm}}{P_0}\right) e^{kt} \]

where

\[k = \frac{dP/dt}{P_0 (P_0 - P_{cm})} = \frac{1}{\rho \text{air} \times 6.895 \text{kPa}} \times \frac{1}{101.325 \text{kPa} \times (101.325 - P_{cm})} \]

\[t = 0.00116 \text{ day}^{-1} \]

and

\[\phi = \frac{P_{cm}}{1 - \left(\frac{P_0 - P_{cm}}{P_0}\right) e^{kt}} \]

Evaluating at \(t = 30 \text{ days} \)

\[\phi = \frac{101.325 \text{kPa}}{1 - \frac{101.325 \text{kPa}}{101.325} e^{-30(0.00116 \text{ day}^{-1})}} = 544 \text{ kPa} \quad P_{cm} \text{ at 30 days} \]

Rule of Thumb gives \(\phi = P_0 - 6.895 \text{kPa}/\text{day} \)

At \(t = 30 \text{ days} \)

\[\phi = 600 \text{kPa} - 201 \text{kPa} = 403 \text{kPa} \quad P_{cm} \]

The rule of thumb predicts a larger pressure loss.

Results for both models are presented below.

![Tire Pressure vs. Time](image-url)

Tire Pressure vs. Time

- **Exact Model**
- **Rule-of-Thumb**

![Graph](image-url)