Given: Re-entrant orifice in the side of a large tank. Pressure along the tank walls is essentially hydrostatic.

Find: the contraction coefficient,
\[C_c = \frac{A_1}{A_0} \]

Solution:

Apply the \(x \)-component of the momentum equation to the cylinder:
\[F_{x_1} - F_{x_2} = \int \rho \frac{dV}{dt} \ n \cdot \Delta \vec{v} + \rho \mathbf{v} \cdot \mathbf{n} \ dA \]

Assumptions:
1. steady flow
2. uniform flow at jet exit
3. hydrostatic pressure variation across \(A_1 \) to \(A_2 \)
4. momentum flux across horizontal portion of \(A_2 \) is negligible.

Then
\[\int \rho \mathbf{n} \cdot \mathbf{v} \ dA = m \mathbf{v} = \rho A_2 \mathbf{v}_2 \]
\[\rho A_2 \mathbf{v}_2 = \rho A_1 \mathbf{v}_1 \]
\[\mathbf{v}_2 = \frac{A_1}{A_2} \mathbf{v}_1 \]

Apply the Bernoulli equation along the central streamline from \(1 \) to the jet exit:
\[p_1 + \frac{1}{2} \rho \mathbf{v}_1^2 + \rho g z_1 = p_2 + \frac{1}{2} \rho \mathbf{v}_2^2 + \rho g z_2 \]

Assumptions:
1. frictionless flow
2. \(\rho \) constant

And
\[\frac{p_1 - p_2}{\rho g} = \frac{1}{2} \mathbf{v}_1^2 - \frac{1}{2} \mathbf{v}_2^2 \]

\[\therefore C_c = \frac{A_1}{A_0} = \frac{p_1}{p_2} \]