Review of dynamics

1.a. Dynamics of Particles

Fundamental properties: \(m, t, r, f \) (mass, time, position, force)

Definitions
\[
\begin{align*}
v & = \frac{dr}{dt}, \\
a & = \frac{dv}{dt}.
\end{align*}
\]

Axiomatic laws (for particles):
\[f = ma \] (1.3)

and for particles in contact
\[f_{ij} = -f_{ji} \] (1.4)

where \(f_{ij} \) is the force that particle \(i \) applies on \(j \).

Work done by variable force \(f \) acting on a particle \(P \) which moving from \(s_1 \) to \(s_2 \) along the trajectory \(S \) is defined by
\[W_{1-2} \triangleq \int_{s_1}^{s_2} f \cdot ds \] (1.5)

The force is conservative if there exists a potential function \(V(r) \) such that
\[W_{1-2} = V(r_1) - V(r_2). \] (1.6)

The work in this case is independent of the path of motion.

The kinetic energy for the particle is defined by
\[T \triangleq \frac{1}{2} mv^2 \] (1.7)

and it follows from (1.3) that
\[W_{1-2} = T_2 - T_1. \] (1.8)

The momentum of the particle is defined by \(mv \), and it also follows from (1.3) that
\[\int_{t_i}^{t_f} f dt = m v_2 - m v_1. \] (1.9)

1.b. Dynamics of Rigid Bodies

Rigid body is a system of particles with center of gravity \(G \). Its angular acceleration \(\omega \) is a vector in the direction of its instantaneous axis of rotation, with magnitude that is equal to the angular speed of rotation with positive counterclockwise sense.
It follows from (1.3) & (1.4) that for rigid body in plane motion
\[\mathbf{f} = m \mathbf{a}_G \]
(1.10)
\[\mathbf{M}_G = I_G \alpha \]
(1.11)
where the moment \(\mathbf{M} \) is defined by
\[\mathbf{M}_G = \mathbf{r} \times \mathbf{f} \]
(1.12)
where \(\mathbf{r} \) is any vector from \(G \) to the line of action of \(\mathbf{f} \), and the angular acceleration \(\alpha \) is
\[\alpha = \lim_{\Delta t \to 0} \frac{\omega(t + \Delta t) - \omega(t)}{\Delta t} \]
(1.13)
The kinetic energy for rigid body is given by
\[T = \frac{1}{2} m v_G^2 + \frac{1}{2} I_G \omega^2 \]
(1.14)
and (1.8) holds.
The angular momentum for rigid body is defined by \(I_G \omega \), and it follows from (1.11) that
\[\int_{t_1}^{t_2} \mathbf{M}_G dt = I_G \omega_2 - I_G \omega_1 \]
(1.15)

1.c. Relative Motion

The Operator rule for differentiation. Let \(XYZ \) be a stationary system and let \(xyz \) be a moving coordinate system with variable angular velocity \(\omega \). Then for any vector \(\mathbf{h} \)
\[\left(\frac{d\mathbf{h}}{dt} \right)_{XYZ} = \left(\frac{d\mathbf{h}}{dt} \right)_{xyz} + \omega \times \mathbf{h} \]
(1.16)
where \(\left(\frac{d\mathbf{h}}{dt} \right)_{XYZ} \) is the time derivative of \(\mathbf{h} \) in terms of the stationary coordinate system and \(\left(\frac{d\mathbf{h}}{dt} \right)_{xyz} \) is the time derivative of \(\mathbf{h} \) done by an observer which is attached to the rotating coordinates \(xyz \) (and suffers therefore from a severe headache).
Let O and A be the origins of XYZ and xyz respectively. Let \mathbf{r}_A and \mathbf{r}_B be the vector position of A and a particle B in terms of XYZ as shown in the figure below. Then

$$\mathbf{r}_B = \mathbf{r}_A + \mathbf{r}_{B/A} \quad (1.17)$$

where $\mathbf{r}_{B/A}$ is the position of B as observed by an observer at A. Application of the operator rule gives

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} + \omega \times \mathbf{r}_{B/A} \quad (1.18)$$

and

$$\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A} + \omega \times (\omega \times \mathbf{r}_{B/A}) + 2\omega \times \mathbf{v}_{B/A} + \omega \times \mathbf{r}_{B/A} \quad (1.19)$$

where $\mathbf{v}_{B/A}$ and $\mathbf{a}_{B/A}$ are the velocity and acceleration of B as observed by the observer at A.

Remark. The above equations describe the Galilean Transformation. According to this transformation, contrary to experimental results, the speed of light c in XYZ is different from that observed in xyz. Let the position of A as a function of time t be $\mathbf{v}t \mathbf{k}$ where v is constant, and suppose that X and Y are parallel to x and y respectively for all time t (i.e. $\omega = 0$ for this case). Then the Lorentz Transformation is

$$
\begin{pmatrix}
\mathbf{r}_{B_x} \\
\mathbf{r}_{B_y} \\
\mathbf{r}_{B_z}
\end{pmatrix} =
\begin{pmatrix}
\mathbf{r}_{B/A_x} \\
\mathbf{r}_{B/A_y} \\
\mathbf{r}_{B/A_z} \sqrt{1 - \beta^2} + vt
\end{pmatrix},
$$

where $\beta = v/c$.

The time in the two systems is not the same

$$t_A = \frac{t - \frac{\mathbf{v}\mathbf{r}_{A/A}}{c^2}}{\sqrt{1 - \beta^2}}.
$$

We will stick however to the Newtonian dynamics. For small β the two transformations give almost identical results.
Bonus Problem 1.1.

We read in Whittaker\(^1\), p.2:

Consider a rigid body, one of whose points is made immoveable by some attachment; suppose that the body is free to turn about this point in any manner, and let any two possible configurations of the body be taken: for convenience we shall call these the configuration \(P \) and the configuration \(Q \). We shall now shew that it is possible to bring the body from the configuration \(P \) to the configuration \(Q \) by simply rotating it about some definite line through the fixed point, i.e. that a rotation about a point is always equivalent to a rotation about a line through the point.

So suppose that three unit vectors defining an orthogonal coordinate system are initially (configuration \(P \)) in the directions

\[
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix},
\begin{pmatrix}
0 \\
1 \\
0
\end{pmatrix},
\begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix},
\]

and that the system is then rotated about its origin such that at the new position (configuration \(Q \)) the unit vectors are in the directions

\[
\begin{pmatrix}
1/\sqrt{6} & -1/\sqrt{3} & -1/\sqrt{2} \\
2/\sqrt{6} & 1/\sqrt{3} & 0 \\
1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2}
\end{pmatrix}
\]

Find: (a) the axis of finite rotation from \(P \) to \(Q \), and (b) the angle that the system is rotated while moving from \(P \) to \(Q \).

E-mail the results (include in your message only three vector components and one angle)

to: ram@me.lsu.edu

\(^1\) E.T. Whittaker, *A treatise on the analytical dynamics of particles and rigid bodies with an introduction to the problem of three bodies*, Cambridge University Press, London, 1937